Finsler Metrics with K = 0 and S = 0
نویسنده
چکیده
In Finsler geometry, there are infinitely many models of constant curvature. The Funk metrics, the Hilbert-Klein metrics and the Bryant metrics are projectively flat with non-zero constant curvature. A recent example constructed by the author is projectively flat with zero curvature. In this paper, we introduce a technique to construct non-projectively flat Finsler metrics with zero curvature in each dimension. The technique can be used to construct many non-projectively flat Finsler metrics of constant curvature.
منابع مشابه
Randers Manifolds of Positive Constant Curvature
We prove that any simply connected and complete Riemannian manifold, on which a Randers metric of positive constant flag curvature exists, must be diffeomorphic to an odd-dimensional sphere, provided a certain 1-form vanishes on it. 1. Introduction. The geometry of Finsler manifolds of constant flag curvature is one of the fundamental subjects in Finsler geometry. Akbar-Zadeh [1] proved that, u...
متن کاملGeneralized Douglas-Weyl Finsler Metrics
In this paper, we study generalized Douglas-Weyl Finsler metrics. We find some conditions under which the class of generalized Douglas-Weyl (&alpha, &beta)-metric with vanishing S-curvature reduce to the class of Berwald metrics.
متن کاملProjectively Flat Finsler Metrics of Constant Curvature
It is the Hilbert’s Fourth Problem to characterize the (not-necessarilyreversible) distance functions on a bounded convex domain in R such that straight lines are shortest paths. Distance functions induced by a Finsler metric are regarded as smooth ones. Finsler metrics with straight geodesics said to be projective. It is known that the flag curvature of any projective Finsler metric is a scala...
متن کاملTwo-Dimensional Finsler Metrics with Constant Curvature
We construct infinitely many two-dimensional Finsler metrics on S 2 and D 2 with non-zero constant flag curvature. They are all not locally projectively flat.
متن کاملOn 5-dimensional 2-step homogeneous randers nilmanifolds of Douglas type
In this paper we first obtain the non-Riemannian Randers metrics of Douglas type on two-step homogeneous nilmanifolds of dimension five. Then we explicitly give the flag curvature formulae and the $S$-curvature formulae for the Randers metrics of Douglas type on these spaces. Moreover, we prove that the only simply connected five-dimensional two-step homogeneous Randers nilmanifolds of D...
متن کامل